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Abstract 

Exact formulae of Ewald's conception of the exten- 
ded dynamical theory of diffraction are applied to a 
crystal of finite thickness. The results obtained are 
compared with those yielded by conventional and 
extended Laue theory. 

1. Introduction 

In the so-called 'conventional'  dynamical theory of 
diffraction some approximations are used, with the 
consequence that the final formulae are not valid in 
some extreme cases. This unfavorable situation 
occurs, for example, when the Bragg angle is near 
7r/2. This case has been dealt with by Kohra & 
Matsushita (1972), Caticha & Caticha-Ellis (1982), 
Brfimmer, H6che & Nieber (1979) and Litzman & 
Dub (1990). Considerations in these papers are 
limited to a semi-infinite crystal. The aim of the pres- 
ent paper is to generalize the method of the papers 
of Litzman (1986) and Litzman & Dub (1990) to a 
crystal of finite thickness. The formulae of these 
papers will be referred to as I and II followed by the 
number of the relevant equation. 

2. Exact and approximate formulae for the reflectivity 
on a slab 

As in the papers by Litzman (1986) and Litzman & 
Dub (1990), in the following the diffraction of a scalar 
wave on a system of Fermi delta potentials will be 
discussed. The notation of these papers with some 
small exceptions will be used. The solutions of the 
dispersion equation ( I I. 11 ab) will be denoted by ~,p+q-. 
Though the general formula (I.38) is invariant to the 
choice of the indices +, - ,  pq, for practical cases it 
is advantageous to denote the solution ~ that is near 
[see § 3 of Litzman & Dub (1990)] to the pole Opq- 

4--- as q, pq. Further, the assumption is made that the 
diffraction takes place on a crystal of finite thickness, 
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i.e. the diffraction centers form a simple lattice 

Rm = m~a~ + m2a2+ m3a3, 

ml, mE=0, +1, + 2 , . . . ,  +00, (1) 

m3=0, 1 , 2 , . . . ,  N. 

Similarly, as in Litzman & Dub (1990), the reflec- 
tivity ~ (0;q) in the direction of the vector Kpq is given 
by 

jr(0pq) I COS ~pq 
= c o s  

det M-(pq)  ]2 cos s c 

= c o s  

(2) 

The matrices H, M-(pq)  were defined by Litzman 
(1986). In the case of a simple lattice without basis 
they can be written in the partitioned form 

H =  H2, /-/22 ' (3) 

with blocks 

-/2,= 

 211-- 

H, ,= x~_yp+q , 

iiliL H12= x ~ -  ypq ' 

x~ - y-pq '" ' 

x~-ypq ((Xoo)N+',... ' , (X~v)N+'), (4d) 

(i,j), (p, q ) =  (0, 0 ) , . . . ,  (u, v), 
+ - -  . + - -  + - -  . + - -  

= lOpq ) ,  Xpq exp (lOp q ), ypq = exp ( (4e) 

whereby (i , j)  are the indices of the columns, (p, q) 
are those of the rows and ( a l , . . . , a , )  denotes a 
diagonal matrix with elements a l , . . . ,  a, on the main 
diagonal. The matrix M-(rs )  in (2) differs from the 
matrix H defined by (3) in the first row only. This 
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row has the form [1 
I I M - ( r s ) o o . , ~ l l =  + -  - , . - . ,  + - ,  

Xoo-- Yrs Xuv -- Yrs 

1 1 ] 
Xoo-Y~ ' " " x~, ,-  y~ " 

(5) 

In the case of a semi-infinite crystal, formula (1.38) 
can be simplified to the form (I.55), discussed by 
Litzman & Dub (1990). Litzman & R6zsa (1980) tried 
to find a more explicit expression for (1.38) in the 
case of a crystal of finite thickness; their result, 
however, was of no practical use. That is why we 
content ourselves in the present paper with the follow- 
ing approximations. 

(i) From the physical arguments given at the begin- 
ning of § 3 of Litzman & Dub (1990), the distances 
Opq- Op+q] and Opq- Opq are assumed to be small. Let 

us consider the Bragg reflection in the direction of 
the wave vector K~. Thus (see II.20), 

0~-o(k) = 0~(k) + 27rj + r/, 

j integer, ]~7]'el, (6) 

for one pair of indices (rs) only and the poles 0o+o 
and 0~ of the dispersion equation (II.11ab) nearly 
coincide. (The case when more than two poles 
coincide is discussed in the Appendix.) In the 
matrices H and M~q(rs) let us omit all terms except 
those for which 

I x ~ -  - y,,+~-I ~ 1 (7) 
holds. Then the non-zero elements of H are the terms 
along the main diagonal plus the terms 

1 1 
( 8 )  

4 -  - - ,  + • 

Xoo- Y,-s xL - Yoo 

Similarly, the non-zero elements in the first row of 
M-(rs)  are 

1 1 (9) "k- - - '  - -  

Xoo-Y,~ x ~ - y , s  

only. In this approximation, 

det M-(rs)  
= [ ( x ~ )  N+'  - (X~o) N + ' ]  

det H 

x L~o+o-_~otX,,j 
x ~ -  y,-~, + ,N+iq-I 

- -~ootXoo) j (10) 
X I'$ 

is obtained. 
(ii) A further approximation will be made by the 

solution of the dispersion equation (II.11ab, 11.22). 
Denoting 

+ Xoo = x, = exp (i~b~), x~-~ = x2 = exp (i~2) (11) 

and using the same procedure as in Litzman & Dub 

(1990), we get 

x~,2 = [exp ( iO~) / (F + b°s)] exp (it//2) 

x[H~s cos rl/2-½(floo+ flr,) sin 77/2 

+ i([3oo/3rs)i/2(y2 1) ' /2 ] .  (12) 

b,.~,Hr~,F, Y, rl The definitions of symbols/3oo,/3,~, o 
used in (12) are explained in Litzman & Dub (1990) 
[(II.12a), (II.24), (II.28), (II.23a), (II.25), (II.20)]. 
From (12) it follows that 

x~lx2 = 1 +(21{n2s+[( f loo- f l rJ2)]2})  

x [-/3oofl,~ ( y 2 _  1) + i(flOOflrs) '12 

X {Hr~ COS r / / 2 -  [(/3oo+/3rD/2] sin r//2} 

x (y2 -1 ) ' / 2 ] .  (13) 

Using (II.23b), the formula for reflectivity (2) can 
be written as [see (10)] 

~(o~) = I [ ( x ~ )  ~ + '  - (X~o) ~ + '  ] 

x {[ Y + ( y 2 _  1)'/2](x~) N+' 

- [y - (y2-1) ' i2 ] (X~o)N+ ' } - ' l  2. (14) 

3. Crystal without absorption 

In the following, a crystal without absorption will be 
dealt with. In this case, Qo,/300,/3rs, Hrs and Y are 
real and the cases y 2 >  1 and y 2 < l  will be con- 
sidered separately. 

(a) y 2 >  1 (the region outside the total reflection 
of a semi-infinite crystal). In this case, from (12) 
follows Ix,,d = 1. Thus $t and ~2 in (11) are real and 

0~-02  = - i  In x~/x2, (15) 

where x~ and x2 are given by (13) as functions of the 
known parameters/300,/3,s and r/. By simple algebraic 
operations we get [see (11)] 

(x~) N+~ - (Xg-o) N+~ 2=4  sin 2 (N + 1)(0~- 02)/2, 

x~s) + (Xg-o) = 4 cos2 ( N +  1)(~b~ ~b2)/2. 

Finally, (14) yields 

sin2 [ (N  + 1)/2](~0~ - ~b2) 
~ ( 0 ~ ) = y 2 _ l + s i n 2 [ ( N + l ) / 2 ] ( 0 _ 0 2  ). (16) 

(b) y 2 <  1 (the region of the total reflection of the 
semi-infinite crystal). In this case, from (12) it follows 
that x~x*2 = 1. Thus we put in (11) 

+ 

Xoo = xl = exp 0, x~ = x2 = exp (-~b*), (17) 

is complex. Then, 

@+O*=lnx~ /x2 .  (18) 

Proceeding similarly as above, in this case 

sinh2 [ (N  + 1) /2] (~+ ~*) (19) 
~ (0~)  = 1 -  y2 +sinh 2 [( N + 1)/2](~ + ~*) 

is obtained. 
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Let us remark that (16) and (19) are valid for skew 
reflection as well. 

In standard textbooks on conventional dynamical 
theory of diffraction [e.g. Zachariasen (1946), 
equations (3.143), (3.144); Pinsker (1978), equations 
(8.33), (8.36)], the formulae for the reflectivity in the 
case of zero absorption read 

sin 2 [A(y 2- 1)1/2] 
~(0~)  y2_l+sin2[A(y2_l) l /2] ,  

y2 > 1 (20) 

(outside the region of total reflection), 

sinh 2 [A(1 _ y2)1/2] 
( 0 L) = 1 - y2 + sinh 2 [ A ( 1 - y2)1/2], 

y2< 1 (21) 

(in the region of total reflection), where 

A=[k]Xh[/2(cos ~ cos ~r~)~/E](s+ 1)aaz. (22) 

In both (20) and (21), the reflected beam is assumed 
to be in the plane of incidence. 

In order to compare our formulae for the diffraction 
of neutrons with those for the X-ray diffraction we 
substitute in our formulae above [see (II.5)] 

Qo = -k2g-2oXo/47r. (23) 

The correspondence between the parameters Y in 
(16), (19) and y in (20), (21) has been discussed in 
§ 4 of the paper by Litzman & Dub (1990). Now, let 
us investigate the properties of the parameters qJl - qJ2 
and ~ + q~* given by (15) and (18), respectively. Since 

I/3,,ql, lnl, ll - n~sl = lQo/ al, lQo/ al,~ l (24) 

(a is the lattice constant), (13) and (23) yield 

In Xl/X2=(ika3z/H,.s)[g2/cos ~ cos ~ ] , / 2  

x (y2 -1 ) I /2+O(Qo/a )  2. (25) 

Using (15) and (18) and neglecting in (25) terms 
of order (Qo/a) 2, we can write our formulae (16) and 
(19) for the reflectivity in a formally analogous form 
to that of formulae (20) and (21) of the conventional 
theory: 

sin 2 [,if( y 2 _  1)1/2] 
~(OL) = y 2 _ l  +sinE [ , i f (y2_  1)1/2], 

y2 > 1 (26) 

(outside the region of total reflection), 

sinh 2 [~¢(1 - y2)1/2] 
~ ( 0 ~ )  = 1_  y2+sinh2 [~¢(1_ y2)1/2], 

y2 < 1 (27) 

(in the region of total reflection), where 

se = [ klxol/ 2( cos ~ c o s  ~rs) ]a3z[ ( N + 1)/nrs],  

Hr~ = 1 + O( Qo/ a). (28) 

Thus, the difference between A (28) and s¢ (34) is 
negligible. 

4. Concluding remarks 

In Litzman & Dub (1990), the exact formula (II.29) 

~°°(O~)=]Y(O~)~[Y2(O~)-l]l/212]g2(07~)12 (29) 

was given for the Bragg reflectivity on a semi-infinite 
crystal. In this paper the approximate formula (14) 
for the Bragg reflection on a crystal of finite thickness 
has been obtained. Since the dispersion equation 

+ x~ (11) and the (I 1.11 a) for the evaluation of Xoo, 
definition of the parameter Y (11.25) are the same in 
the case of the semi-infinite and the finite crystals, 
we can conclude that the validity of the approxima- 
tion (14) corresponds to the validity of the approxi- 
mation in (I1.18): RE(0L) 2= 1. 

In order to compare our results with those of the 
conventional dynamical theory of diffraction, in § 3 
the crystal without absorption was considered. In this 
case, the reflection coefficients of the conventional 
theory are of the simple form (20), (21). Making use 
of the approximation (25) it was shown that (as in 
the case of a semi-infinite crystal) the formulae of the 
conventional theory, (20), (21), and those of the 
extended theory (26), (27), are formally identical, the 
meaning of the parameters y, A and /or  Y, ~¢ are 
however different. The difference between the par- 
ameters y and Y was discussed by Litzman & Dub 
(1990): it is important when the Bragg angle is near 
7r/2 (Briimmer, HiSche & Nieber, 1979). The par- 
ameters A (22) and ~¢ (28) differ in the coefficient 
Hrs only. Since Hrs = 1 + O(Qo/a), this difference is 
negligible. 

Let us mention that (16) and (19) are valid for skew 
reflection as well, while in the conventional formulae, 
(20), (21), the reflected beam is assumed to be in the 
plane of incidence. 

The reflectivity of a crystal with absorption is given 
in the conventional theory by formula (3.139) in 
Zachariasen (1946). In this case (when Y, /300, /3r~ 
are complex), the algebraic rearrangement of our 
formula (14) to a form similar to the conventional 
one is much more complicated. Obviously, a formally 
analogous formula to the conventional one has to be 
obtained in this case, containing, however, the par- 
ameters Y and M instead of y and A. 

APPENDIX 

Let us suppose that, besides (6), 

O pq(k) = O~,,(k) + 2"rrj + 'q, 

(pq) # (00), (mn)~(rs)  (A.1) 

also holds, i.e. more than two poles of the dispersion 
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equation (II.11ab) coincide. Then, in the matrices H 
and M-( r s )  also the great terms 

( x p +  ÷ -1  ÷ ( X p q  - -  _ ypq) , y~..)-1, 
(A.2) 

( x ~ , , -  yL,,) -1, ( x ~ , , -  yp+q) -1 

are to be taken into consideration. Since these addi- 
tional large terms are outside the first row of the 
matrix M-( rs ) ,  a simple consideration shows that the 
coincidence of the poles in (A.1) does not change the 
value of the quotient det M - ( r s ) / d e t  H, (10). Another 
situation appears if (6) is satisfied for two (or more) 
different pairs of indices (rs), i.e. when as well as (6) 

0~-o(k) = 02b(k) + 27rj+ r/, 

( a b ) # ( r s ) ,  (3.3) 

also holds. In this case, additional large terms appear 
in the first rows of the matrices M-(rs )  and H and 
they change quotient (10). The conditions (6) and 

(A3) mean physically that either the Bragg reflection 
condition is satisfied for two wave vectors K~ and 
K~b or the incident wave is near the grazing reflection 
angle [see § 3(iii) of Litzman & Dub (1990)]. These 
cases were not considered in the present paper. 
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Abstract 

Probability relationships between structure factors 
from related structures have allowed previously only 
for either differences in atomic scattering factors 
(isomorphous replacement case) or differences in 
atomic positions (coordinate error case). In the coor- 
dinate error case, only errors drawn from a single 
probability distribution have been considered, in spite 
of the fact that errors vary widely through models of 
macromolecular structures. It is shown that the prob- 
ability relationships can be extended to cover more 
general cases. Either the atomic parameters or the 
reciprocal-space vectors may be chosen as the ran- 
dom variables to derive probability relationships. 
However, the relationships turn out to be very s imilar  
for either choice. The most intuitive is the expected 
electron-density formalism, which arises from con- 
sidering the atomic parameters as random variables. 
In this case, the centroid of the structure-factor 
distribution is the Fourier transform of the expected 
electron-density function, which is obtained by 
smearing each atom over its possible positions. The 
centroid estimate has a phase different from, and 
more accurate than, that obtained from the unweigh- 
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ted atoms. The assumption that there is a sufficient 
number of independent errors allows the application 
of the central limit theorem. This gives a one- (centric 
case) or two-dimensional (non-centric) Gaussian 
distribution about the centroid estimate. The general 
probability expression reduces to those derived 
previously when the appropriate simplifying assump- 
tions are made. The revised theory has implications 
for calculating more accurate phases and maps, 
optimizing molecular replacement models, refining 
structures, estimating coordinate errors and inter- 
preting refined B factors. 

1. Introduction 

A model of a crystal structure always has errors in 
any parameters used to describe the structure: atomic 
coordinates, atomic scattering factors, thermal 
motion parameters, or even cell dimensions. In addi- 
tion, the approximations of spherically symmetric 
atoms and of harmonic (or even isotropic) thermal 
motion will lead to small errors. In refining a struc- 
ture, we attempt to minimize these errors as far as 
possible, but it is best to keep their existence in mind 
and to be aware of their effects. 
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